| \sim | _ | | |--------|---|--| | () | 7 | | | w | | | CFCI_3 used to be the propellant in most aerosol cans. | Use IUPAC rules to name CFCl₃ | |---| | Give an equation for each of the two propagation steps in the conversion of CHFCl ₂ into CFCl ₃ | | Equation 1 | | Equation 2 | | In the presence of ultraviolet radiation, CFCl ₃ breaks down in the upper atmosphere to form chlorine free radicals. | | Give an equation for this reaction. | | Chlorine free radicals catalyse the decomposition of ozone. | | Give two equations to show how chlorine free radicals decompose ozone | | Equation 1 | | Equation 2 | | | | (e) | The production and use of CFCs have been banned in many countries because they decrease the amount of ozone in the upper atmosphere. | |-----|--| | | State why ozone in the upper atmosphere is important for life on Earth. | | | | | | (1) | | | (Total 7 marks) | ## **Q2**. This question is about reactions of halogenoalkanes with hydroxide ions. (a) Outline the mechanism for the nucleophilic substitution reaction of 1-bromobutane with sodium hydroxide. (2) A student investigated the rate of nucleophilic substitution of halogenoalkanes with hydroxide ions. Identical concentrations of 1-bromobutane and 1-iodobutane were reacted separately with sodium hydroxide solution under the same conditions. The concentration of halide ions was monitored during each experiment. The graph below shows the student's results. | (b) | State how the graph shows that the rate of reaction of 1-iodobutane is faster than the rate of reaction of 1-bromobutane. | | |-----|---|--------| | | State why the rates are different. | (2) | | | (Total 4 r | narks) | | 4 | $\overline{}$ | 2 | |---|---------------|---| | 1 | J | 3 | This question is about isomers. Hex-2-ene has the molecular formula C₆H₁₂ (a) Draw the displayed formula of a **position** isomer of hex-2-ene that exists as *E* and *Z* isomers. (1) (b) Draw the displayed formula of a **chain** isomer of hex-2-ene that does **not** exist as *E* and *Z* isomers. (1) | Rutana | l has the | molecular | formula | CAHO | |--------|------------|-----------|---------|---------| | Dulana | เ เเลอ แเซ | HIUECUIAL | iomiuia | C41 18C | (c) Draw the skeletal formula of a **functional group** isomer of butanal that has an absorption in the range 1680–1750 cm⁻¹ in its infrared spectrum. (1) (d) Draw the skeletal formula of a structural isomer of butanal that has an absorption in the range 3230–3550 cm⁻¹ in its infrared spectrum. (1) | (e) | Several saturated halogenoalkanes contain 17.8% carbon, 3.0% hydrogen and 79.2% bromine by mass. | |-----|--| | | Calculate the empirical formula of these compounds. | | | Give the IUPAC names of two saturated halogenoalkanes that have this empirical formula. | Empirical formula | | | Names of halogenoalkanes | | | 1 | | | 2 | | | (4)
(Total 8 marks) | | U4 | | | |----|--|--| |----|--|--| This question is about the synthesis of propylamine ($CH_3CH_2CH_2NH_2$) by the reaction of 1-iodopropane ($CH_3CH_2CH_2I$) with an excess of ammonia. $$CH_3CH_2CH_2I + 2 \ NH_3 \rightarrow CH_3CH_2CH_2NH_2 + NH_4I$$ (a) Name and outline the mechanism for this reaction. | Name of mechanism | | |-------------------|--| | • | | Outline of mechanism | 4 | (b) | 1 iodopropo | na ia a | liquid of | room ton | noroturo | |---|-----|-------------|----------|-----------|---------------|------------| | ١ | U, | 1-iodopropa | iic is a | iiyuiu at | . IOOIII leii | iperature. | Calculate the number of molecules in 5.0 cm³ of 1-iodopropane (M_r = 169.9). Give your answer in standard form. For 1-iodopropane, density = 1.75 g cm⁻³ The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ Number of molecules _____ (2) (c) In an experiment, 10.3 g of 1-iodopropane (M_r = 169.9) are reacted with an excess of ammonia. 2.3 g of propylamine (M_r = 59.0) are produced. Calculate the percentage yield in this experiment. Percentage yield _____ (2) (Total 9 marks) | Q5 | | | |----|---------------|--| | | | er suitable conditions, 2-bromobutane reacts with sodium hydroxide to uce a mixture of five products, A , B , C , D and E . | | | Prod | ucts A , B and C are alkenes. | | | A is a | a structural isomer of B and C . | | | A do | es not exhibit stereoisomerism. | | | B and | d C are a pair of stereoisomers. | | | Prod | ucts D and E are alcohols. | | | D and | d E are a pair of enantiomers. | | | (a) | Give the names of the two concurrent mechanisms responsible for the formation of the alkenes and the alcohols. | | | | Mechanism to form alkenes | | | | Mechanism to form alcohols | | | (b) | Define the term stereoisomers. | | | | | | | | | | | | (2) | | | (c) | Deduce the name of isomer A . | | | | Explain why A does not exhibit stereoisomerism. | | | | Name | | | | Explanation | (2) (d) | , | hydroxide to form alkene A . | | |-----|--|--------------| (3) | | (e) | Deduce the name of isomer B and the name of isomer C . | | | | Explain the origin of the stereoisomerism in B and C . | | | | Name | _ | | | | _ | | | Explanation | | | | ' | - | | | | - | | | | (2) | Outline the mechanism for the reaction of 2-bromobutane with sodium (f) Draw 3D representations of enantiomers **D** and **E** to show how their structures are related. (2) (g) A student compares the rates of hydrolysis of 1-chlorobutane, 1-bromobutane and 1-iodobutane. The suggested method is: - add equal volumes of the three halogenoalkanes to separate test tubes - add equal volumes of aqueous silver nitrate to each test tube - record the time taken for a precipitate to appear in each test tube. | State and explain the order in which precipitates appear. | | |---|----------------| | Order in which precipitates appear | | | | | | | | | Explanation | | | | | | | | | | | | | | | | ·- · · · - | | | (Total 15 mark |